饮食文化城市文化宗教文化民族文化民间故事戏剧文化
首页 文化民族文化

世界上最难的数学题 世界十大数学难题

2017-07-11 17:09:00作者:匿名第一星座网

哥德巴赫猜想

  哥德巴赫猜想

  哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。

  因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。

  如今关于这一猜想常见的陈述为欧拉的版本,把命题“任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和”记作“a+b”。即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。

  1966年,中国数学家陈景润证明了“1+2”成立,即“任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和”,但哥德巴赫猜想本身依然是一个未解的世界级难题。

  从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。

  弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”。

  中国数学家与哥德巴赫猜想
  华罗庚是中国最早从事哥德巴赫猜想的数学家。1936—1938年,他赴英留学,师从哈代研究数论,并开始研究哥德巴赫猜想,验证了对于几乎所有的偶数猜想。

  1950年,华罗庚从美国回国,在中科院数学研究所组织数论研究讨论班,选择哥德巴赫猜想作为讨论的主题。参加讨论班的学生,例如王元、潘承洞和陈景润等在哥德巴赫猜想的证明上取得了相当好的成绩。

  1956年,王元证明了“3+4”;同年,原苏联数学家阿·维诺格拉朵夫证明了“3+3”;1957年,王元又证明了“2+3”;潘承洞于1962年证明了“1+5”;1963年,潘承洞、巴尔巴恩与王元又都证明了“1+4”;1966年,陈景润在对筛法作了新的重要改进后,证明了“1+2”。

你可能也喜欢:
世界十大名画之一:日出印象的作品赏析
世界十大名画之一:泉的创作
世界十大名画之创作亚当的作品赏析
世界十大名画之向日葵的创作背景和评价

展开阅读
共有10条信息8/10首页上一页12...78910下一页尾页
八字合婚八字精批十年大运测终生运

热门推荐

姓名配对测终生运测事业运合婚配对命格精批测终生运

综合测试

生日密码
生辰八字
称骨骨重
前世今生
生肖查询
生命灵数
黄道吉日
公历换农历
农历转公历
返回顶部